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Summary

)k critical procedure for use in linear modelb is Introduced and

developed in some detail. It is based on a nonlinear analogue to the

usual linear least squares procedure, more specifically, in the inte-

grated distance between characteristic functions (densities) and their

sample counterparts. Location and scale parameters are estimated

simultaneausly. The procedure depends on a user specified parameter

which may be varied to determine the sensitivity of the parameters and

observational weights to such variation. A sensitivity analysis of this

type is useful in isolating potential problems with the data or with the

assumed model. When the procedure is employed with the user-oriented

parameter held fixed, a robust procedure results. The statistical pro-

perties of this procedure are discussed in some detail. A number of

illustrations, taken from the literature, are examined.,

Key wrds: parametric density estimation, sensitivity analysis, robust

estimation of location and scale, experimental designs,

integrated distance, characteristic functions
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1. Introduction

We introduce in this paper a critical, and robust, procedure for

the analysis of experimental design data. The procedure is based on an

integrated residual distance between the model characteristic function and

its sample counterpart or, equivalently, between the assumed model density

and its Parzen kernel density estimate. The motivation for such a pro-

cedure is developed in some detail and a number of examples, taken from

the literature, are examined. The procedure is useful in identifying

potential outliers and potential departures from assumptions and can be

adapted to arbitrary types of experimental designs with little difficulty.

A number of statistical properties of the procedure are discussed.

The procedure determines the sensitivity of the parameter estimates

and observation weights to the change in a single parameter X. Accordingly,

a range of values of this parameter X may be utilized. If the structural

and error model vis-a-vis the data are internally consistent, then the

parameer estimates and observational weights are stable under changes of

X. If internal consistency is lacking, either because some data are not

consistent with the structural-error model or because the model is not

descriptive of the data, the parameter estimates or the observational

weights will not be stable under changes in X. The weights provide val-

uable diagnostic tools. The procedure also may be used with fixed X as a

robust method of data analysis.

The literature on robustness and critical methods has by now grown

to be very extensive and a detailed review does not seem appropriate here.

Excellent summaries and critiques are however available in recent books

by Barnett and Lewis (1978), Huber (1981), and Rey (1977).
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2. The Distance Between Densities Procedure

In a traditional least squares setting the jth response variable

yj is related to independent variables xjo, xjl, ..., Xjp, considered

fixed, under the assumption that

P
E(yj,. ) = x 1, (2.1a)

or in matrix notation

E(yIX) - X6 (2.1b)

for n mutually independent vectors (yj,xj,,Xj,,...,xjp). The quantities

T
Ok are to be determined. We take as column vectors 8 - (8096 ...,1p)

( , , , )T. The design matrix is X = (xjk), j , 1,2,...,n,,

k - 0,1,...,p and x. - (x jo,Xjl,...,xp ) is a row vector with Xio 3 1. X is

of full rank unless explicitly stated otherwise. For each j we

also assume that yj - xj., given x., is normally distributed with mean 0

and variance a 2; in short yj - xB1 is N(O, 2). The parameters 8 are

determined by minimizing over the a's the sum of squared residuals

n 2 n 2
ej-. (yj-E(yjIx.) 2  (2.2)

Under the Gaussian (i.e. normality) assumption an estimate of a2 is

provided by
2  ( -1 (y T xj) 2  n .2  (2.3)

S(n-p-l) I Y - a j "-'----3)
j-1 in-p-1i-I

where the vector a is the value of B which minimizes (2.2) and a2 is the

2 2
maximum likelihood estimate of a . This estimate of a is not provided by
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the least squares procedure. The underlying Gaussian error structure

is not incorporated into (2.2). It is reasonable to inquire if the

Gaussian error structure may be incorporated into the estimation process

in such a way that the least squares character of (2.2) is retained while

a critical nature is imparted to the estimators of 8 and a2. Huber (1964,

1981, Ch. 7) auggesms the replacement of the quadratic function eJ
2 in (2.2)

by another convex function p(e.), say, which does not increase as rapilly
2

as e. A number of such functions p have been proposed, see Rey (1977).

Hampel (1974) suggests working directly with score or influence functions

in order to obtain robustness properties. Our integrated distance between

densities or characteristic function approach has substantial points of

contact with the work of both Huber and Hampel and also with the work of

Parzen (1962). We have found that the Gaussian error structure may be

conveniently and intuitively appealingly introduced into an estimation

process reminiscent of (2.2) in the following way.

2
The yj, given xi, are independent N(xjB,a 2) and hence the character-

istic function of the yj given x. is

* (u) E(exp(iuylx.)) - exp(luxj8 - ja2u2), (2.4a)

the density corresponding to *.(u) is

f My (2a 2 )X0 exp(- a,.L 2 (2.4b)

Proceeding by analogy, we replace.the yj in (2.2) by exp(luyj) and

corresponding to E(yjIx j) we put E(exp(iuyjlxj)) - 1 (u).
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The analogue to the sum of squares in (2.2) is the sum of moduli squared

n 2 nIrj(u)l2 - lexp(iuyj) - (2.5)

with

r.(u) = exp(iuyj) - exp(iuxB - a a2 u2 )  (2.6)

representing a functional residual. Clearly E(r.(u) jx.) - 0 for all u.

The expression (2.5) is of little statistical use unless specific values

of u are chosen for defrntteness. Close examination of (2.5) shows that

the u-values should be adaptively chosen or problem dependent. For

example, large values of x.8 produce high frequency sinusoids in *.(u)

and unless a set of u values is judiciously chosen, extraction of infor-

mation from (2.5) will be difficult. The difficulties associated with the

appropriate sampling -ate of the stochastic process r.(u) may be avoidedJ

by adaptively centering and scaling the yj but we do not pursue this

avenue here. The need for such adaptation was first noted by Paulson,

Holcomb, and Leitch (1975) and Leitch and Paulson (1975). Quandt and

Ramsey (1978) considered a moment generating function analogue of (2.5)

but did not address the adaptation question.

Rather than specifying a fixed and finite set of u-values In (2.5),

we will weight the Irj(u)1 2 by a function Iw(u)i 2 to be determined and

Integrate out over u. We shall also make the weight function possess an

adaptive nature. As we shall see, there are definite advantages to such

a course of action. An immediate advantage Is that the question of the

rate at which rj(u) should be sampled need not be considered because the
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integration corresponds to continuous sampling.

We wish to estimate the parameters 8, a2 from consideration of

n f lexp(iuyj) - exp(ix ju - a2u2i2 w(u)j2 du. (2.7)

Unlike (2.2), a2 may be estimated through consideration of (2.7). The

quantity Jn represents a sum of integrated distances. Parseval's theorem

(Feller, 1966, Ch.19, Heathcote, 1977) allows an expression of J in

terms of densities if w(u) is chosen as a characteristic function. If

w(u) is a characteristic function with density f (y) then we obtain the

alternate expression in sums of integrated distance between densities,

= 2ir j (fw(y-y.) - f (y)*,f.(y)) 2 dy (2.8)n

j=l -

with the density f (y) given by (2.4b). The symbol * denotes the operation

of convolution of f (y) with f.(y). We thus see that, apart from questionsw j

of optimality, a practically appealing choice for the density fw(y) is the

Gaussian for then the convolution f w(y)*f.(y) is again Gaussian. (The

convolution of two Gaussian densities represents the density of the sum of

two independent Gaussian variables.) We thus take

w(u) - exp(- I dy2), (2.9)

or equivalently,

2
fw(y) - (2d) - exp(- Y ) (2.10)

The choice of d is open to us and an appropriate choice will become

apparent as we proceed. We thus have
(y-x.81) 2

fj (y)*f w(y) - (21r(a 2+d)) "  exp(- , (2.11)
o+d
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and if we define the jth residual in y as

e (y)-(2wd)"t exp(- (2r (o+d))-' exp(- 2.), (2.12)d +d

then (2.8) becomes the sum of integrated residuals

J= (27r) I e2(y)dy, (2.13)
j=1 -T J

a function of the (yj,xj) and d. The quantity f (y-yj) is an unbiased

Parzen kernel density estimator for fj(y)*f w(y). The spirit of our work

is quite different from that of Parzen (1962). See, however, Heathcote

(1978).

The appeal of (2.13) notwithstanding, it is slightly more convenient

to work with the characteristic function version of Jn given by (2.7).

With w(u) given by (2.9), (2.7) may be explicitly integrated to give

n ( ) 2 w 2- 2) 1 exp(- +( 2,fi n I,[-i+2d- 2 2. (2.14)

j=1 2d+a 2d+ 2  2a +2d

Differentiation of (2.14) with respect to 8 yields the estimating equation

n2S n~ (yi -x.8))

S xT(Y.-x.J ) exp(- 2 - 0; (2.15)n j-1 j J2d+a

differentiation of (2.14) with respect to 02 gives the estimating equation

i I ( - j )2 (Y j - x ) 2

j- 2+02)312  -2+a 2  exp(- 2d2

ji1 (2da 0 2d~a 2d+a
(2.16)

1 
0.

(2d+2 
2 ) 312 "O
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In order to make the estimator of , say a2, scale invariant and possess

2an adaptive nature we choose d - Xa2 . From (2.15) and (2.16) we find that

the estimators B of 8 and a2 of a2 satisfy the implicit equation

n n
- ExjxjvjI[X xjTyjvj, (2.17a)

j-1 ij=1 J

or

a ( xTv x)' I xTv ys (2.17b)

or n
.1 (y. - 8x- )X'kvjX

8k k Zk , k=O,1,...,p, .17c)x2
Xjk'jA,

and n2I(y j-xj) v jX.

a2  1 -1
1+2.X n

or IA -ivj (1 2X 2
or a2  1 h y2 yT(VX - V X (X T V X l XTVX)y (2Yb

CF , 1+2'X (2.18b)

tr(V X) -n (1+2X. 3/2

where
n

xTvxx X= n* xjTx~-

X j.1jxj 13)

vJ - exp ( - 1 2 (2.19)

V- diag(vl),... Vn) ) and tr(V ) denotes the trace of V.

Since the estimators 6 and &2 are implicitly defined in the system

(2.17) - (2.19), an iterative solution is required. We have found a fixed

point procedure to be attractive because of its relative simplicity and

ease of Implementation. Matrix inverses can be avoided in (2.17c) and this

Is a real advantage In large systems. The fixed point procedure Is imple-
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mented by choosing as the initial guess the maximum likelihood estimates

0 (XTx)WIxTy, a2 2 n-1 yT(I..x(XTX)-IXT)Y" (This corresponds

to X = + -.) These values are substituted into the right-hand sides of

(2.17) - (2.19) and new estimates 1 and 52 are determined on the left-
1 1

hand sides of (2.17) and (2.19). The process is repeated until the

absolute or relative difference between successive estimates reaches pre-

assi~gned tolerance levels. Convergence of this process is not guaranteed

for all values of X and more than a single solution for R and &2 may

exist for a range of values of A. We have succeeded in constructing an

instance of multiple solutions. Extensive experience with this procedure

is a wide variety of applications and in simulation trials has failed to

uncover any difficulty with multiple solutions or with convergence as

long as A is not chosen excessively small (possibly negative). Since the

statistical properties of the estimators also depend on X, we now investi-

gate this dependence.

3. Some Properties of the Estimators

The form of estimating equations (2.15) and (2.16) show that the

estimators 8 and a2 are M-estimators. The dependence of the estimators

on X has been, and will continue to be, suppressed for notational con-

venience. It should however be remembered that we are considering a class

of estimators. The estimators and a 2 are consistent for a and a2 for

all A > - under the assumptions of section 2 (Bryant and Paulson, 1979).

The estimators are also asymptotically normally distributed with and a

asymptotically independent (Thornton and Paulson, 1977).
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The quantity Jn has been used to produce score functions for esti-
2

mating 8 and a 2. n does not provide, except in a special sense, a bona

fide objective function. Objective functions are easy to develop for

location problems when the underlying parent is symmetric. Score functions

are also easy to produce for location problems when the underlying parent

is symmetric. Both are much harder to develop for non-location problems

or non-symmetric parents.

The asymptotic variances are readily developed from the score

functions by the standard expansion arguments (Cram6r, pp. 500-503, for

example) from which asymptotic normality is derived. We sketch the
n

development for from equation (2.15). Let Sn j= s5 j in this equation.

If S0 is the true value of 8, we expand Sn around B0 to get

a~s
n n n 8oJ

o 1 sj +- I(I-X o ) + R (3.1)
J 1 j=1 a j=1 DOT 0 n

where the (p+l)xl vector Rn is a remainder term and sa0j indicates that

s j is evaluated at 0 Set d = Aa2 . By the multivariate central limit
n

theorem I soJ is asymptotically (p+l) variate Gaussian with mean vector
j=l

0 and covariance matrix

~n : s T )

Gn = E~ Soj BOJ °d =

which may be explicitly evaluated as

Gn 2( I+ , 3/2 n i
= a x.Tx. (3.2)

n somej-1 r

after some algebraic reduction.
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This truncated expansion suggests that as n increases ( - O) is becoming

e (p+l) variate Gaussian with mean vector J and variance-covariance matrix

cov() = H"1 G H-1n n n

U 8+2 3/2 T-
= 3+8+423/ (X Tx) - 1  (3.3)

since aS
n a

Hn - E(I -T-) d 2

Jul), 328 xjx

(1+2X\ 3/2 n T
k + 2) 1 Jul j j

(2+2X/ (xTx) ~I. (34)

The arguments required to produce cov(a) are not given here. The co-

variance matrix of (3.3) should be inflated by a factor similar to

n/(n-p-1) to reduce the bias. We suggest that it be inflated by

tr(VA): (3.5)
tr(V, -V X(X V X XV

which becomes n/(n-p-1) when X-,.

2.
The asymptotic variance of a is also determined from a truncated

Taylor's series expansion of (2.16) and some straightforward but tedious

computations. We find

11+2,\i 6+8x+4A 1+2;k 3

var(a2) o - 2U+Al 73,,--. , \2 -1 (3.6)
9 1 2 11+2X0~

(T+ 2X/ ( 2+2XI
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The asymptotic efficiency of 6 relative to is obtained from (3.3) as

- .23/2
e(j) (~4) (3.7)

4+8)+4x2)

that of a relative to 2 is obtained from (3.6) as

12) I (1+ ) 2 ( 1 +2) L  5

e(a 2-X (3.8)2 1+2X\j 6+8x+4x2  1+21\3

T+ X - 2 2+2X4
(3+2X)

These efficiencies are provided in Table 1. A value of X=2 produces

2efficiencies of about .96 for estimating 8 and about .94 for a . The

efficiency declines as X decreases from +-. The estimators and a

of (2.17) and (2.18) are still well defined even when - j < X < 0 but

observe that fw(y-yj) in (2.8) is defined as a Dirac delta function at

y-y1 when X-0 and d - Xa2.

TABLE 1

Efficiencies of the Estimators , a2 for Selected Values of X

x

Estimator 0 .5 1 2 4

.65 .84 .91 .96 .99 1

a2 .54 .78 .87 .94 .98 1
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Influence functions describe the behavior of an estimator as a

function of a single additional observation. An additional observation

in our framework is the pair (y,x) with x considered given. The

influence function for 52 at the Gaussian distribution with mean xB and

variance o2 , i.e. N(xa,a2 ) in short, is determined from the score

function obtained from (2.16). The score function is divided by

E( to give the influence function.
Do 2 1 d-Xa 2

We obtain after some algebraic reduction

I C YXa2q 2+2, 5/2 1(y-xoS)2x
IC(y,x; 2,Nl) = a\ /2 j(y-x8)2 exp (- o 821+,)

+ (1+2X)()+ 3/2 - (1+22)o2  2)
1+2x\/2 2 x') 2(3-9)

(1+2X)

This influence function is bounded in the residual y-xS, and redescends

to an asymptote greater than zero. Accordingly, even pairs (yx) which

give rise to very large residuals produce a contribution to the estimate

of a2 when X < .

The influence function for i at tha Gaussian distribution is a

little more difficult to obtain. We derive a finite sample version.

The Infinite sample version is obtained by an appropriate passage to the

limit. To estimating equation (2.15) we add the score function associated

with the additional observation (y,x) to get

Sn+1 = Sn + xT(y-xl) exp(-* 2d+ 2 )



If we define

asn1
Hn+I - E 2-n,

d-Xa

then

( +2 ) 3/2 T THn+ \ (X X+xx

where the last equality follows from (3.4). The inverse of Hn+i is

(Belsley, Kuh, Welsch, 1981, p. 64)

H-1 M /2+2X\ 3/21 (xTx) - 1 _ (xTx)'lxTx(xTx) '

nHl 1+2)(x I + x x(x) xT

A finite sample version of the influence function for B at the Gaussian

distribution, given the x. and x, is defined as the normalized differenceJ

(see Barnett and Lewis, 1978, p. 137)

IC (y,x; ,N) - (n+1) {H-1 s - H'I Sn n+l n+l n n d=X,2
3/2 T-1 T -1 (y-x8) 2Z

(n+l) 2+Z2 , 3 ( X Tx ) '- " (XT X) x x (X X) xT(y_xB) exp (- ...

I + x (XTx) " 1 xT  a2(1+2X)

(3.10)

The argument (n+l) in (3.10) is the normalizing factor. The influence

function for p is bounded and redescending in he residual y-xB but is not

bounded in x. Thus a single point out of n+l can completely change the

character of a regression estimate j. This is due in part to the fact that

a regression model represents a one-dimensional summary or an index of

a much more complicated phenomenon In a higher dimensional Euclidean space.
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Unless the higher dimensional aspects of the phenomenon are taken into

account, we run the risk, even in a critical or robust setting, of pro-

ducing inappropriate summary models for multidimensional phenomena. Some

approaches to bound the influence of points far out in factor space are

discussed in Belsley Kuh and Welsch (1980, Ch. 2) and Krasker and Welsch

(1979) where further references may be found. We do not consider the

subject in any further depth in this paper.

Influence functions are, of course, only one measure of qualitative

robustness. We have emphasized the influence curve here because it is

the most important and because other qualitative measures of robustness

such as gross error sensitivity, local shift sensitivity, rejection point,

and breakdown point (see Barnett and Lewis, 1978, pp. 140-141) can be found

once influence functions have been provided. For example, the rejection

point for i is infinite since the Euclidean norm 11 ICn(y,x;B,N)(I will not

be zero for any (y,x) if the residual y-xaO or x#O. The estimators and
-2
; have breakdown points in excess of 40% for n>10. There will be regions

of (y,x) space where (y-x$) will dominate the behavior of ICn (y,x;,N) and

others where x will dominate. Even though x is fixed, it may be advantageous

to regard It as being variable in order to force the influence curve

IC (y,x; ,N) to behave less radically in x, especially for x of high

dimension.

It is clear that Jim B - , the least squares estimator of B.

By L'Hospital's rule we find that

lim a2 a&2 n 1  (y.-x.i)2
-- i - 1
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Finally, there is a small, but non-zero, probability that the estimator
-2a will be negative. This will be of no consequence in practice.

4. Examples

We now illustrate and expand on the results of the previous

sections through several examples. We will discuss first scalar data,

then regression models, and move finally to the analysis of designed

experiments.

Example 4.1. The sixteen observations in Table 2 are taken from

Quesenberry and David (1961) and are putatively from a Gaussian population

N(u,a 2). Even without formal analysis the paired observations .74 and 1.09

are suspicious with respect to a single Gaussian parent. The range test

of Quesenberry and David just barely rejects the observation 1.09 as an

outlier at significance level .05. The reason for this is that the

presence of the three rightmost observations produce an inflated internal

estimate of a2. For our analysis, a choice of the value A is required.

If our choice is to be based on efficiency we refer to Table 1 to obtain

a suitable value. The estimates for X-2 are provided in Table 2. Also

presented In Table 2 are weights associated with each observation.

These weights are determined from the final iteration of the estimation

algorithm and in this case are

(y.j_)
2

v -
a (1+2X)

wJ vJ/v.



Table 2

Integrated Distance Estimates 2 -2

jx (XlO) for Selected values of )
I

Observation xmm X-2 Xn.5 A,-O

1 .32 .625 .62 .58 .44
2 .35 .625 .65 .67 .63
3 .37 .625 .66 .72 .75
4 .38 .625 .67 .74 .80
5 .39 .625 .67 .76 .85
6 .44 .625 .69 .82 .98
7 .45 .625 .69 .82 .98
8 .46 .625 .69 .82 .97
9 .47 .625 .70 .81 .94
10 .48 .625 .70 .81 .91
11 .52 .625 .69 .75 .70
12 .53 .625 .69 .73 .64
13 .57 .625 .67 .63 .40
14 .74 .625 .53 .17 .75(-2)
15 .74 .625 .53 .17 .75(-2)
16 1.09 .625 .15 .34(-3) .1O(-9)

W x - .27 .07 .08(-1)

Mean .52 .48 .45 .44

s.d. .19 .16 .11 .10
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The magnitudes of these weights ser~e to rank the observations according

to their contribution to the parameter estimates of U and a2. As x

decreases, the role of observations 14, 15, and 16 declines dramatically.

This rs entirely consistent with the density estimation aspects of the

procedure.

In this scalar case we have x 0- O  From (2.8) we determine a

score function for $B0 through

n afw(Y)*fj(y)

fY 4 j (fw(y-y) -fw(y)*f(y))dys 03 n j 

= -afw(y)*f(y) n
4 -r (f ( j-1 ) - fw(y) *f (y))) dy

-- €0

since f.(y) - (2wa2 ) -1 exp-( -'0)2) f(y), say, is independent of

j. With d-Xa2 we have on the final iteration the estimate of fw(y)*f(y),

say g^(y), is from the last expression

n 12_
nY) I exp(. (yYj)2)Ay n 1(,~ 2)* 2A

The density estimate §Xy) is plotted in Figure 1 for several values of X.

As X decreases, (Y) "sees" observations 14, 15, 16 as different from

the remainder of the set and this is reflected in the decreasing values

of the weights associated with these observations.

As X decreases from infinity to zero, the estimated mean and tandard

deviation decrease from .52 and .19 respectively to .44 and .10 respectively.

The estimates for j and a2 remain nearly constant as X Is taken from zero
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to - land thus achieve stability. In general, if the data are Gaussian,

the mean and variance do not fluctuate appreciably as X decreases.

The magnitude of the weights at the final iteration provide an

attractive index of the role each observation is playing in the interplay

between assumed model and the observations. Low weighted observations

highlight nonconsonance of the observations and the model. This dis-

agreement may be due to one or more causes. We are not recommending that

low weights be used as a rejection criterion for outliers but as a signal

that these observations merit further attention. If an observation has

a low weight it is a potential outlier; or indicates a potential problem,

the nature of which may be very complex. Only discordant outliers will

have low weights. The normalized weights qjk are presented in Table 2.

The weights j are equally informative since it is the relative magnitudes

of the Z". and q that provides an indication that something might be

awry. It would be useful to have a benchmark weight for easy spotting of

observations which require particular attention vis-a-vis the assumed

model. Somewhat arbitrarily, we choose as a benchmark weight the value

corresponding to an observation 3 standard deviations from the mean.

That is, we set yj - + 3a in v. exp "and define

w 111exp( - 4.5 (1+2X)-1)
n

j!l

At X-2 c-.;y observation 16 is less than W,. At A-O observations 14, 15,

16 are less than WX.
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The role of the ; j is not unlike the introduction of normal prob-

ability paper Into the estimation scheme In that, as X decreases, less

and less weight Is attached to observations which depart from linearity

and more and more weight is attached to subsets which are characterized

by linearity. We shall not always be able to ascribe reasons to such
n

departures. The sum I v-. contains useful information concerning the

agreement of the data with the assumed Gaussian model. The expression
n

(2.14), which essentially contains I P has been used by Bryant and
j-1 jX,

Paulson (1981) in a goodness-of-fit context.

We make the above remarks (which apply more generally) at this point

because it is easy to see what is happening with a simple Gaussian error

model. This will not be the case when the Gaussian error model is

combined with structural models.

Example 4.2. The data for this example were given by Mickey, Dunn

and Clark (1967) and re-examined by Andrews and Pregibon (1978). In

Table 3, x denotes the age of a child in months at first word and y

denotes the Gesell Adaptive score. The model being fit is y 0 + 1X.

Only pair (17,121) receives a low weight for )X-I and X-1 relative to the

remainder of the observations. This observation does not have much

influence on the estimates of S0 and Bi. Pair 18, (42,57), does since

it Is far out in x-space. The distances (2.7) and (2.8) are primarily

concern-ad with residuals yj-x 8 as an index of the two-dimensional quant-

Ities (yj,xj), j - 1,2,...,n. One dimensional models cannot capture or

summarize all the Information available in multi-dimensional data unless

the model assumptions are exactly met. An appropriate handling of this

matter seems to require multivarlate methods. Our results agree with those



Table

Age at First Word, Gesell Adaptive Score, Parameter

Estimates, and Weights .jA(xlO)

Case Age x Score y x m X=1 X=.5

1 15 95 .48 .55 .58
2 26 71 .48 .50 .50
3 10 83 .48 .36 .30
4 9 91 .48 .49 .47
5 15 106 .48 .47 .46
6 20 87 .48 .55 .59
7 18 93 .48 .54 .56
8 11 100 .48 .55 .58
9 8 104 .48 .54 .58
10 20 94 .48 .50 .50
11 7 113 .48 .45 .43
12 9 96 .48 .54 .57
13 10 83 .48 .36 .30
14 11 84 .48 .41 .36
15 11 102 .48 .53 .58
16 10 100 .48 .55 .59
17 12 105 .48 .48 .47
18 42 57 .48 .55 .59
19 17 121 .48 .10 .04
20 11 86 .48 .44 .41
21 10 100 .48 .55 .59

WX .48 .11 .05

BO 109.87 110.53 111.14

81 - 1.13 - 1.22 - 1.25

c (adj us ted) 11.02 10.11 9.87
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of Andrews and Pregibon.

5. Design Problems

For reasons of brevity we shall restrict our attention to relatively

simple situations in the analysis of variance. The methods we shall sub-

sequently present can be used for much more complicated situations. The

general approach that should be taken in more complicated settings will

become clear since it closely parallels the usual least squares develop-

ment.

The analysis of the two-way layout, with one observation per cell

when multiple outliers are present, has been the subject of particular

attention from Daniel (1978) and Gentleman and Wilk (1975). It is note-

worthy that, until the article of Daniel, nearly all the results on the

two-way analysis of variance with no replication and outliers have been

restricted to the case in which at most one or two outliers are present in

the layout. Daniel and Gentleman and Wilk obtain, after much ingenious

and careful analysis, useful criteria for the identification of possibly

spurious observations.

The mathematical model for the two-way layout is

YjkZ + i + a k + CjkL (5.1)

where yjkt represents the Lth response in the (j,k) cell, t -1,2....,njk,

j - 1,2,...,a, k = 1,2,...,b, 1i is the grand mean, a. is the jth row

effect, ak is the kth column effect, and ejkP is a normally distributed

2error with zero mean and variance a. We make all the standard assumptions
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concerning error structure in the two-way tables.

The cell j,k has sample estimate

jk-(u) - exp(iuyjk) (5.2)

with corresponding expected value

jk( = exp(iu(u+lj+Bk) - 2 2 (5.3)

t = 1,2,...,njk. Proceeding along the lines of section 2 and with

referral to (2.114), the parametric estimates i, j., k are obtained by

producing a set of score functions from the sum of integrated squared

residuals

a b njk

" j ki = ~j Ikjl(u) - jk(u)12 exp(-du )dujul k-l e= 1 -

S 2  ep
j k d ' 2d+

2d + 2a

We obtain the score functions by differentiating (5.4) with respect to

Ut 0, 1ko a2 and then setting d = a2 We obtain

+ X ( a k Vjk., k YjkkVjkZX, (5.5a)
j k t J k Y_

( + aj + 0k)Vj, , - j V y - 1,2,...,a (5.b)

kt jtjtX
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G + j+ Bk)vjkt, X Yjlvjkt,X, k , 1,2,...,b. (5.5c)j t j

An estimate of the variance is determined implicitly from (5.51 and

2 1 Sk) 2 v i ke, I
a -2 jkZ j +t (5.6),+2- /1+7X\ 3/2)

j k Z

where
(Yjk- "' a " iJ"k))

Vj X=exp( " (5.7)
a (1+2k)

The rank of the system (5.5) for fixed v is clearly (a+b+l) - 2 since

summation of (5.5b) over j gives (5.5a) and summation of (5.5b) over j

is identical to the sum of (5.5c) over k. From (5,5a) we see that it is

natural to augment the system (5.5) with the two side conditions,

XX aj vjk = 0, (5.8a)
j k~ t~-

O k vjkt = 0. (5.8b)
j k e

The system (5.5) augmented with (5.6) leads to the statistically and

computationally appealing recursive system

J [ [ [Y jkZ V jle,X

=  k (5.9a)

j k

0j = , m 1,k ... a - (5.9b)
I j vJk'X

i . . . . . . .
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ek  , k- 1,2,...,b-1 (5.9c)v jkt,A

a-i b njk a b-1 njk

I I I k 1 t _ __ -1 k -I ZI
a n k , b " " a Rik (5.9d)
I' b ' ak , ., ' bZ ~ VaZ, X j

k-i t-1 j=l Z-I

for fixed v The implementation of the estimation procedure is

straightforward. Choose initial estimates a, 1i, Cx, 6, evaluate v.
j ko j kt, X

for the initial estimate. Now index the left-hand sides of (5.9) and

(5.6), by (m+l), the right-hand sides of these equations by m. Iterate

until a pre-determined absolute or relative tolerance on all parameters

is met. Once vjlZX is fixed, all operations are pur.ly linear. Thus

this algorithm is computationally efficient, especially for large systems.

Local solutions to the system (5.6) - (5.9) can be encountered when X

becomes too small, but difficulties can be avoided by starting with least

squares (X-) estimates and decreasing X gradually. This point will be

subsequently discussed.

Suppose now that we wish to perform a critical analysis on a two-

way layout with a single covariate. The analysis for multiple covariates

will be similar. The model is

Yk ) + Cj + Bk + Yx + £.k, (5.10)

z - 1,2,..., njk. The definition of terms is analogous to those given

earlier in this section. Just as in the above, we ultimately find the
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estimating equations tobe. implicitly given by

S(Yjk- 1 - - Yxj)vjl,

L. - , j - 1,2,...,a-l (5.11a)

k t

13k  = , k = 1,2,...,b-1 (5.11b)

J

XX [ (YjI - 1' - ci. - (k)5.llc)Z,
2 1 j k, (5.11c)

0 A /2 jk tXv 3/2)
Y ~~~ j k I (-1

(Yjk I - a- " Bk-YXjk )

v - exp - - Ok2(1+k2)  2 (5.11e)
JICLA Ia (1+2))

along with the two constraints

jkt i. AjkZX k X k vjkt, = 0. (5.11f)

The pattern for other layouts follows the usual least squares

approach. The structure of the estimators is the same apart from the

weighting aspects.
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6. Design Examples

Example 6.1. We present first the two-way layout with n k-l 

analyzed in great detail by Daniel (1978). Both the data and one of our

analyses are summarized in Table 4. The first tabular entry is the data

quoted by Daniel, the percentage of men aged 55-64 with hearing 16dbs or

more above audiometric zero. The second tabular entry is the final

weight W jk,5 obtained from a critical analysis with X-.5.

Daniel "localizes" the non-addttive observations, computes the

required variance estimate from the additive portion of the layout, and

identifies the observations in cells (3,1), (3,2), (4,3), (5,3), and

(6,3) as outliers. As Daniel points out, such elaborate methods are

necessary since probability plotting and one-at-a-time methods would

prove to be ineffective.

In analogy to the benchmark weight in example 4.1, we define the

weight WA = exp(-4.5(1+2X) )/ ik,A" With X=.5 we see that observa-
j,k

tions (3,1), (3,2), (4,3), (5,3), (6,3) and (5,1) have extremely low

weights ;jk, associated with them. The first five Daniel has set aside

as outliers. While Daniel did not consider the disturbance in (5,1) to

be of sufficient magnitude to designate it an outlier, it is the sixth

largest deviation in absolute value found by him. Daniel appears to

be aware of the presence of this disturbance and others identified via

their low weights in Table 4 since he notes at one point that the variance

estimate from the unperturbed portions of the table is most likely too

large due to the presence of some smaller disturbances. The adjusted inte-

grated distance estimate of a2 is (f) (7.29) - 9.92. Daniel's estimate
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of a2 after removal of the five outliers is 10.40. Even with the very

small weights associated with the five observations explicitly set aside

by Daniel, these observations still have a non-zero influence on the

22
estimate of a. It would seem desirable to have an estimator for a

whose influence function redescends to zero.

There are at least six observations which are not consistent with

the underlying model. The reasons for the inconsistencies cannot be

completely ascertained from the analysis but there are some comments

which seem appropriate. From our utilization of the available infor-

mation we conclude that there are severe distributional difficulties

associated with a two-way analysis of this data. Since the data consist

of percentages between 1.4 and 93.6 the constant variance assumption is

violated. Further, the proportions are not based on equal numbers per

cell which implies that an arcsin transformation would not be helpful;

it is not, the results remain virtually unchanged. Although we have

no means whereby we can separate effects of various departures from

assumptions, the independence assumption of the two-way model is

violated because the last row of the table is a linear combination of

the first three; the deletion of the seventh row does not modify the

results. It is also unlikely that the occupation-frequency cross-

classification exhausts the potential sources of variability.

The direct analogue of Figure 1 is not possible in this case

because the error distribution is being reconstructed from lack of fit

components. The final weights 'Jk, or wJk provide a different but

equally Informative summary of the density fitting.
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When we set X-O in this analysis we encounter a local solution

in which only twelve of the weights are non-zero. This solution is

also dependent on starting values. This phenomenon is partly due to the

fact that a reliable error distribution cannot be reconstructed from

this data at such an intense level of scrutinization as given by X-O.

Example 6.2. The data fnr this application comprising the first

and second tabular entries of Table 5 are taken from Rao (1965, p. 245)

and has recently been analyzed by Hettmansperger and McKean (1977) in

a regression context. The weekly growth rate data have been treated as

a two-way layout, sex-food combination versus pen, since sex-food combi-

nations are also of primary concern. The relevant linear model is given

by (5.10) with njk-l. Yjk is the weekly growth rate, xjk is the Initial

weight associated with food-sex combination jand pen k, a. is the effect ofJ

food-sex combination on growth rate, 0k is the effect of pen k on growth

rate, and y is the rate of change of response with initial weight. The

results of the analysis with X-.5 are also given in Table 5. The analysis

is conducted it) accordance with equations (5.11). The unadjusted estimate

of a2 is a2..067; the adjusted estimate is .067 3 - .106. We determine

that the benchmark weight W - .0013. The observations in cells (2,AH)
.5

cind (2,BK) have associated weights less than W and deserve special atten-
.5

tion. Compare W 5 with the boldface entries of Table 5. Observations in

cells (3CG), (4,BG), and (5,AG) also have relatively low associated weights

and are all about 2.4 (adjusted) a standard deviations removed in the left

tail. These also deserve special attention. These five observations exert

a substantial influence on the estimates for the effect of sex-food combi-

nation. The superiority of sex-food combination AG and of food A is much
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more apparent under our analysis than under ordinary least squares analysis.

Hettmansperger and McKean (1977) also determined that cells (2,AH) and

(2,BH) deserved special attention. 4.

Example 6.3. This 3x4 factorial experiment with four replicates per

cell was first discussed at length by Box and Cox (1964). Each of twelve

poison-treatment combinations was administered to a group of four animals; the

survival times are recorded in Table 6. Brown (1975) subsequently used these

data to demonstrate a stepwlse procedure for detecting the cells which give

rise to a significant interaction in the analysis of variance. Having

formed the mean survival time for each of the twelve cells, Brown deter-

mined that the interaction between poison and treatment was localized in

the (3,B) poison-treatment cell. Brown suggests the analysis that results

from the replacement of the mean value in cell (3,B) with the traditional

missing value estimate as an acceptable substitute for performing an

analysis of variance on the reciprocal of survival time - as originally

suggested by Box and Cox.

By forming the cell means and focusing his analysis exclusively on

them, Brown failed to identify the true character of the data. Table 6

displays the OLS residuals and the weights wilSO,. 5 for the survival times.

The twelve groups of residuals exhibit a sign arrangement with probability

of approximately .21 from a X2 goodness-of-fit test of this or a more

extreme configuration. The weights w in comparison with W -.0021
jkt,5.5n

obtained from fitting the usual additive model indicate that observations

(1,B,2), (2,B,1), (2,B,4), and (2,D,2) may not be consistent with the

assumptions or that one or more of the assumptions may not be consistent

with the data. These four observations correspond to the four largest
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survival times. If they fell in one cell It would strongly suggest the

presence of an Interaction. However, the validity of the normality

assumption is considerably more questionable, the right tail of the

survival distribution being too thick to accommodate the normality assump-

tion. A plot of the weights W. 5 against the X-.5 residuals shows this

nicely. A transformation of the data seems to be in order. Note that

some of the largest (in absolute value) residuals do not receive the

lowest weights. Thus these weights are not just a transformation of the

residuals from ordinary least squares.

An analysis with X-.5 of the reciprocals of the survival times

produces a set of weights w! say, which are much better behaved.i ke, .5'

Only observation (2,A,4) is near W' Thus the transformation was-5"

appropriate.

Example 6.4. We now consider a set of data from an unreplicated

23 experiment attributed (see Barnett and Lewis, 1978, pp. 244-246 for

additional background) to C. Daniel. The first two columns of Table 7 de-

scribe the treatment combtnations, and the corresponding yields. The third column

provides the X-,s (OLS) residuals; the fourth provides the A.5 residuals;

the fifth provides the )-.5 weights determined from straightforward

extension of the results In section 5. A single pass with the density - or

characteristic function - based procedure Indicates that the yield of

treatment combination A stands out from the other yields. Thus the para-

meter estimates are not stable under increasing criticism as embodied in

decreasing X and treatment combination A Is highlighted as the combination

which deserves special attention. In this case the treatment yield Is

discordant. We thus see that the critical procedure based on integrated



Table 7

Summary of Analysis of a 23 Factorial Experiment

Main Effects Model

Treatment XAin A.5
Combination Yield Residuals Residuals Weights

(1) 121 -15.25 0.39 o.16

A 145 32.00 64.21 0.27(-16)

B 150 0.50 0.39 0.16

AS 109 -17.25 -0.78 0.16

C 160 4.00 3.77 0.14

AC 112 -20.75 -4.41 0.14

BC 180 10.75 -5.23 0.13

ABC 152 6.00 6.60 0.11
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distances can be useful in initial detection of discordant outliers.

7. Appropriate Values of A

We regard the integrated distance procedure as both an exploratory

procedure as well as a robust procedure. As an exploratory procedure it

can be made increasingly critical in nature by decreasing X. However, X

cannot be decreased indefinitely since then the procedure will begin to

cluster groups of observations and ultimately each observation will be

regarded as a separate cluster. At some point before this latter sta_1 is

reached the procedure may no longer be useful because of the possibility

of multiple solutions centered around various subsets of the data.

If the procedure is to be used in an exploratory fashion, then X

should be varied to determine the response of the parameter estimates and the

observation weights to this variation. We would start with X=- and gradually

reduce the value of X. We typically next take X=l, and X= . Occasionally

we take A-O when a large data set is under study. If the parameter

estimates remain constant so that the rate of change of these estimates

with A remains near zero, then the data and the structural and error model

will be judged to be internally consistent. If the parameters begin to

change with decrease in X, there will be a corresponding decrease in the

weights v' or Vjk,X for some j or some pair (j,k), for example. These

low weights indicate the most sensitive-to-criticism-interface between the

data and the error and structural model and where attention should be

focused in evolving a decision as to whether the data or the model assump-

tions are at variance with internal consistency. Thus we view the explora-
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tory side of the procedure as being useful in model evolution as well as

in isolating trouble spots.

If we regard the integrated distance procedure as a robust procedure,

then X should preferably be held fixed. Efficiency considerations might

partially dictate a particular value of X. On the other hand, the procedure

becomes increasingly qualitatively robust as X decreases and the degree

of robustness desired may partially dictate a value of X. The robustness

properties are due to the connection of the procedure with density estimation.

The parameter X effectively determines the window width in parametric

density estimation.

Finally, we note that it is possible to have one value of the para-

meter A for the location parameter component and another for the scale

parameter component of the procedure. Such a situation would be useful

when scale is a nuisance parameter. For example, in (2.17a) we would use

values vjX and in (2.17b) we would use values vjX.

We have presented the results for X= in our analyses because they

would generally be the final step in determining the sensitivity of model

parameter estimates to changes in X and especially for the sake of brevity.

The extent to which X may be decreased also depends on the experimental

design. If, for example, we were to critically examine data from a Latin

Square design, we might not be able to reduce A to I without driving some

of the weights Vjk,X to zero since, from a density estimation point of

view, only a relatively small number of observations are available to

reconstruct the error density.
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